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Abstract: In industry applications, such as automated on-line semiconductor
production, users of scanning electron microscope (SEM) metrology instruments
would like to have these instruments function without human intervention for
long periods of time, and to have some simple criterion (or indication) of when
they need servicing or other attention. At the present time, no self testing is
u.corporated into these instruments to verify that the instrument is performing
at .a satisfactory performance level. Therefore, there is a growing realization of
the need for the development of a procedure for periodic performance testing.
Postek and Vladar (1996) published a procedure which was based on the objective
characterizat:-on of the spatial Fourier transform of the SEM image of a test
object for this purpose and the development of appropriate analytical algorithms
for characterizing sharpness In this paper, an alternative approach based on thz
multivariate kurtosis is proposed to measure the sharpness of SEM image.
Scauning electron microscopes are being utilized extensivelv in the prodvcti~n
environment. Since these instruments are approaching fuil avtomation, objective
diagnos ic procedures must be implemented to ensure data and measurement
fidelity. One approach to this issue is the sharpness tecanique. It is known that
the low-frequency changes in the video signal contain informution about the large
features »nd that the high-frequency changes carry inforinetion of finer details.
When an SEM image has fine details at a given inagnification, namely, when
there are more high-frequency changes in it, we say it is sharper.

Since an SEM image is composed of a two-dimensional array of data; it can be
expressed as I{u,v), (u = 1,..,n and v = 1,2, ...,n), where u and v are spatial
indices. The corresponding two-dimensional finite Fourier transform is

flz,y) =Y Y I(u,v)el™ ) ©

u=]lv=1

where the spatial frequencies z and » have indices from —N-to N. Base( on
f(z.y), we obser /e that when :n SEM image is visually sharper than a second
image, the high svatial frequenty components of the first image are larger than
those of the second. The fellowing is an illustrative example. Part. a of the attached
Higure shows the performance of a SEM on a heavy gold-coated oxide test sample
at low accelerating voltage. This micrograph was taken iollowing a tip cnange.
This image appears to be far less sharp and lacking in resnlution when it comp~red
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with a similar micrograph (Part ¢ of the figure) taken when the same instrument
was operating more optimally. Parts b and d show the magnitude distribution of
the two-dimensional spatial Fourier transform for the images in Parts a and c,
respectively. From these figures it is clear that for the sharper image in Part c of
the figure, its cone in Part d, which represents the magnitude distribution of the
Fourier transform of the image, is wider than that in Part b of the image in Part
a of the figure.

For a given univariate random variable Z with mean p. and finite moments up
to the fourth, the kurtosis is defined as
By = =4

m3
where m4 and mg are the fourth and second central moments respectively, that
is

ma = E{(Z - p)Y] and ms = o2 = B[{(Z — p.)").

For any univariate normal distribution, 82 = 3. Therefore the value of 52 can be
compared with 3 to determine whether the distribution is "peaked" or "flated-
topped" relative to a Gaussian. Note that kurtosis is a dimensionless ratio.
Four separate distribution density functions with zero mean and unit variance
were compared by Kaplansky (1945) to illustrate the properties of kurtosis. His
results show that the smaller the kurtosis, the flatter the top of the distribution.
Finucan (1964) also discussed the interpretations of kurtosis. The conclusion is
that the distribution with smaller kurtosis is more flat-topped or has a large
shoulder . an that with larger kurtosis.

Note iaat since kurtosis is a dimensionless ratio of the moments, a value of
ku- cosis - an be calculated for any positive function when the area underneath
t: e fun- ion curve is finite and when the curve has finite moments up to the
fouth L% w = f(2) be such a discrete univariate function. Then

i (7 = pa) (25)
[5=1 (29 = )£ (2)12

fa=

where p. = 37 2, f(25)-

Multivariate kartosis has been proposed by Mardia (1970). Let W be a p-dimensional
random vector with inite moments up to the fourth. Let x4 be the mean vector
and I’ be the covaria ice matrix of W. The kurtosis of W is defined by

- 2
Bap = E[(W =) TH (W — )],
where T d notes the transpose of a vector. When p = 1, $2,1 becomes the univari-

ate kartos,s 82 “when p = 2, for a two-dimensional random vector W = (X, Y)T,
the t ‘o-dimeusional kurtosis is given by :

; 9 4 Yy — _

Bro = 4,0+ 0,4 + 2722 + olpy2,2 — V1,3 — Y3.1) (2)
=7

where x4, (%,1=0,1,2,3,4) is

B~ p)R Y~ )Y .
‘el == = = (3}
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and p: and py, are the marginal means and o, and o, are the mafginal standard
deviations and p is the correlation between X and Y. In particular, when a two-
dimensional random vector W has a discrete probability distribution f(z;,yx),
7=0,1,..,nand k = 0,1,..,m, the two dimensional kurtosis can be calculated
similarly with

S0 oreo (@5, yk) (25 — pa)* (yr — py)’ ‘
Vep = =} . (4)

From (3) or (4), the marginal kurtoses of the marginal distribution of X and Y’
are

B2,z = 74,0 and B2,y = 0,4 (5)

From Priestley (1981), the normalized spectral density with zeros frequency at
vie center can be treated as a probability density function. The kurtosis of the
spectral density estimate corresponding to (1) of an SEM image can be calculated
by 72) and (3) or (4). A sharper SEM image corresponds to a spectrum which
has . {arge shoulder or has a flatter shape. Thus, it can be concluded that the
corre: p~anding kurtosis of the sharper image is smaller. Therefore, an increase
in kurtosis over some preestablished reference portends that the sharpness of an
SEM image has teen degraded relative to the existing at the time the reference
value was established. :
The marginal kur:oses defined in (5) are used to measure the shapes of the
marginal distributions. The difference between the marginal kurtoses is a measure
of the shape difference between the marginal distributions. It can be used to
detect possible instrument vibration. To show how the kurtosis can be applied to
the SEM images, a series of five micrographs were taken on the sarie instrument
with only one parameter changed for each image. Two-dimensional kurtoses were
calculated for the five micrographs. The result shows the kurtosic measure gives
the correct ranking of the sharpness of the images.

Keywords: Iruage analysis, kurtosis, discrete Fourier traasform, spatial fre-
quency.
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“IGURE 1. Scanning eletron micrographs and their two-dimensional Fourier
frequency magnitude dist:‘butions. {a) Scanning electron micrograph of heavily
coated oxide *aken followir.g a tip change. (b) Two-dimensicnal Fourier frequency
magnitude dist-ibutions ~f image {a). (c) Scanning electron micrograph of the
same sample a. above, L-it taken when the instrument is functioning at a high
level of pe: forme.r 2. (d) Two-dimensional Fourier frequency magnitude distribu-
‘tions of i.nage (=). Note that there are more high frequency elements present in
the Fou ier frequ acy magnitude distribution from (c)





